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Outline

I Mathematical models.

I Classical approaches.

I Membrane Computing as a bioinspired computing modelling framework.

• Stochastic approach: Multicompartmental P systems.

• Probabilistic approach: Population Dynamics P systems.

I Applications
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Mathematical models

I Abstractions of the real world onto a mathematical domain.

I Useful in what if studies.

I A modern tool for scientific investigation.

I It allows us to analyze and predict.

Properties of a “good” mathematical model

I Relevance.

I Understandability.

I Extensibility.

I Computability and Mathematical tractability.
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Classical approach

I Modelling based on ordinary/partial differential equations (ODEs/PDEs)

At cellular level, it is based on two assumptions:

1. Cells are assumed to be well stirred and homogeneous volumes so that concentrations do not

change with respect to space.
2. Chemical concentrations vary continuously over time in a deterministic way.

I Many computational frameworks have been used to model cellular
systems like Petri nets, process algebra, π–calculus, agents, etc.
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Membrane Computing (Gh. Păun, 1998)

Basic P systems.

Syntactical ingredients:

1. A cell-like membrane structure: a rooted tree.

2. Multisets of objects and strings placed inside the compartments delimited by membranes.

3. Rewriting rules associated with specific compartments.
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Semantics ingredients:

I Configuration + Transition step + Computation.

I Non-determinism and maximall parallelism.
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Multienvironment P systems (I)

A multienvironment P system of degree (m, n, q) taking T time units: (G , Γ,Σ,T ,RE , µ,R,Π1, . . . ,Πn)

? G = (V , S) is a directed graph. Let V = {e1, . . . , em} whose elements are called environments;

? Γ is the working alphabet and Σ $ Γ.

? T is a natural number that represents the simulation time of the system;

? RE is a finite set of communication rules between environments of the following forms

(x)ej −→ (y1)ej1
. . . (yh)ejh

and (Πk )ej −→ (Πk )ej′

? µ is a rooted tree with q nodes.

? R is a finite set of rules of the type u[v ]αi −→ u′[v′]βi
? No rules from R and RE compete for objects.

? Πk = (Γ, µ,M1,k , . . . ,Mq,k ,R) is a basic P system of degree q.

? Each rule of the system has associated a computable function whose domain is {0, . . . ,T}.
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Multienvironment P systems (II)
• A set of m environments.

• A set of n basic P systems (with the same skeleton).

• A set of communication rules among environments.

• Each rule of the system has associated a computable function (depending on the environment).

e1 e2

e3 e4
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Multienvironment P systems versus ODEs/PDEs

I Advantages of multienvironment P systems with respect to ODEs/PDEs.

? They use a language closer to experts than ODEs/PDEs

? They are not affected by the usual constraints present when defining ODEs/PDEs based models.

? They are modular:

• Small changes in the system→ small changes in the model.

• When using ODEs/PDEs most of times we have to start from scratch.
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Stochastic approach: Multicompartmental P systems

• The computable functions associated with the rules are propensities.

• Initially, the basic P systems are randomly distributed among the environments of the system.

e1 e2

e3 e4
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Probabilistic approach: Population Dynamics P systems

e1 e2

e3 e4

• The computable functions associated with the rules are probabilities.

• Initially, each environment contains exactly a basic P system with the same structure.

• There are only rules among environments of the form (x)ej
pr−−−→(y1)ej1

· · · (yh)ejh
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A Semantics for Multicompartmental P Systems

Our strategy will be based on Gillespie theory of stochastic kinetics.

Classical Gillespie Algorithm

Input: A well mixed and fixed volume (m substances subected to chemical reactions r1, . . . , rq).

1. Compute for each rule in rj its propensity, pj ,

2. Compute the sum of all propensities: p0 =

q∑
j=1

pj .

3. Generate two random numbers r1 and r2 from the uniform distribution in the unit-interval.

4. Compute the waiting time for the next reacion τ = 1
p0

ln
(

1
r1

)

5. Select number j0 that verifies

j0−1∑
k=1

pk < r2 · p0 ≤
j0∑

k=1

pk.

Output: The next reaction to be applied and the waiting time for this application.
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Multicompartmental Gillespie Algorithm

Input: A multicompartmental P system.

• Initialization

◦ set time of the simulation t = 0;

◦ for each membrane i compute a pair (ti , rji
) by using the Gillespie algorithm;

◦ construct a list containing all such pairs;

◦ sort this list in increasing order according to ti ;

• Iteration

◦ extract the first pair, (ti0 , rji0
) from the list;

◦ set time of the simulation t = t + ti0 ;◦ update the waiting time for the rest of the triples in the list by subtracting ti0 ;

◦ apply the rule rji0
in membrane i only once;

◦ for each membrane i′ affected by the application of the rule remove the

corresponding pair (ti′ , rji′
) from the list;

◦ for each membrane i′ affected by the application of the rule rji0
re-run the

Gillespie algorithm for the new context in i′ to obtain (t′
i′ , rj′

i′
);

◦ add the new pairs (t′
i′ , rj′

i′
) in the list and sort this list according to each

waiting time and iterate the process.

• Termination

◦ Terminate simulation when time of the simulation t reaches or exceeds a preset

maximal time of simulation.

Output: The next reaction to be applied and the waiting time for this application.
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A Semantics for PDP systems: DNDP algorithm (I)

Direct non-deterministic distribution algorithm with probabilities (DNDP)

Input: A PDP system of degree (m, n, q) taking T time units, T ≥ 1.

C0 ← initial configuration of the system

for t ← 0 to T − 1 do

C ′t ← Ct

Initialization

First selection phase: generates a multiset of consistent applicable rules.

Second selection phase: generates a multiset of maximal consistent applicable rules.

Execution of selected rules.

Ct+1 ← C ′t
end for
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Initialization

RΠ ← ordered set of rules of Π
for j ← 1 to m do

RE,j ← ordered set of rules from RE related to the environment j
Aj ← ordered set of rules from RE,j whose probability at the moment t is > 0
LCj ← ordered set of pairs 〈label, charge〉 for all the membranes from Ct contained in the environment j
Bj ← ∅
for each 〈h, α〉 ∈ LCj (following the considered order) do

Bj ← Bj∪ ordered set of rules u[v ]αh → u′[v′]β
h

from RΠ whose probability at the moment t is
greater than 0 for the environment j

end for
end for

First selection phase (consistency)

for j ← 1 to m do
Rj ← the empty multiset
Dj ← Aj ∪ Bj with a random order
for each r ∈ Dj (following the considered order) do

M ← maximum number of times that r is applicable to C ′t
if r is consistent with the rules in R1

j ∧ M > 0 then

N ← maximum number of times that r is applicable to Ct
n ← min{M, Fb(N, pr,j (t))}
C ′t ← C ′t − n · LHS(r)
Rj ← Rj ∪ {< r, n >}

end if
end if

end for
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Second selection phase (maximality)

for j ← 1 to m do
Rj ← Rj with an order by the rule probabilities, from highest to lowest
for each < r, n >∈ Rj (following the selected order) do

if n > 0 ∨ (r is consistent with the rules in R1
j ) then

M ← maximum number of times that r is applicable to C ′t
if M > 0 then

Rj ← Rj ∪ {< r,M >}
C ′t ← C ′t − M · LHS(r)

end if
end if

end for
end for

Execution of selected rules

for each < r, n >∈ Rj , n > 0 do

C ′t ← C ′t + n · RHS(r)

Update the electrical charges of C ′t according to RHS(r)

end for
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Applications of Multicompartmental P systems

I Signalling pathways:

• Epimermal Growth Factor Receptor.

• FAS-induced apoptosis.

I Gene expression control in Lac Operon.

I Quorum sensing in Vibrio Fischeri.
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Applications of PDP systems

I Population dynamics of ecosystems with ungulates and scavengers:

? Catalan Pyrenees (Spain): 14 species.

? Navarra (Spain): 10 species.

? Swaziland (South Africa): 30 species.

I Population dynamics of the zebra mussel in the dam of Ribaroja (Spain).

I Pyrenean newt population dynamics in the Sierra del Cad́ı (Spain).

I The Hazel Grouse reintroduction in the Pyrenees (Spain).

I Effect of pesti-virus dynamics chamois (Spain).

I Development and growth of amphibians in natural ponds (Spain).

I Effect of management in the whole process of raising pigs (Spain).

I Logic networks (special classes of gene regulatory network)
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? M.J. Pérez-Jiménez, F.J. Romero. P systems, a new computational modelling tool for Systems Biology.
Transactions on Computational Systems Biology VI. Lecture Notes in Bioinformatics, 4220 (2006),
176-197.
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Gene Networks by Means of Probabilistic Dynamic P Systems. International Journal of Unconventional
Computing, 9, 5-6 (2013), 445-464.
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Quorum sensing in Vibrio Fischeri (I)
I Bacteria are generally considered to be independent unicellular organisms.

I Vibrio fischeri exists naturally either in a planktonic state or as a symbiont of certain luminescent squid.

I Vibrio fischeri exhibit coordinated behaviour which allows an entire population of bacteria to regulate the
expression of certain or specific genes in a coordinated way depending on the size of the population.

I Quorum sensing: cell density dependent gene regulation system.

I This phenomenon was first investigated in the marine bacterium Vibrio fischeri.

I The bacteria colonise specialised light organs in the squid which cause it to luminesce.

I The bacteria only luminesce when colonising the light organs and do not emit light when in the free-living
state

I Luminescence in the squid is involved in the attraction of prey, camouflage and communication between
different individuals.
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Molecular mechanisms of Quorum sensing
(K.H. Nealson y J.W. Hasting, 1979; K.L Visic et al., 2000)

I The process start when Lux Box produces proteins LuxR and LuxI at low/basal level.

I Protein LuxI transcribes the signal OHHL.

I Signals OHHL diffuse out of the bacterial cells and into the surrounding environment.

I At high cell density, the signal is able to interact with the LuxR protein to form the complex LuxR-OHHL.

I This complex blinds with Lux Box making it produces LuxR and LuxI at high level.

I Complex LuxR-OHHL causes the transcription of the luminescence genes: a cluster of 5 genes, luxCDABE.
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Modelling Quorum Sensing in Vibrio fischeri (I)
We study the behaviour of a population of N bacteria placed inside a
multienvironmen P system of degree (25, 1,N).

ME = (G , Γ,Σ,T ,RE , µ,R,Π1, . . . ,ΠN)

where:

I G = (V = {e1, . . . , e25}, S) is the following directed graph.
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Modelling Quorum Sensing in Vibrio fischeri (II)

I Γ = {LuxR, LuxR.OHHL, LuxBox, LuxR.OHHL.LuxBox, OHHL}.
I Σ = {OHHL}.
I T ≥ 1.

I Rules from RE .

r1 : ( OHHL )ei
c1→ ( )ei

r2 : ( OHHL )ei
c2→ ( OHHL )ej

r3 : ( Πk )ei
c3→ [ Πk )ej

• µ = [ ]b.
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Modelling Quorum Sensing in Vibrio fischeri (III)

I Rules from R:

r4 : OHHL [ ]b
c4→ [ OHHL ]b

r5 : [ LuxBox ]b
c5→ [ LuxBox + OHHL ]b

r6 : [ LuxBox ]b
c6→ [ LuxBox + LuxR ]b

r7 : [ LuxR + OHHL ]b
c7→ [ LuxR.OHHL ]b

r8 : [ LuxR.OHHL ]b
c8→ [ LuxR + OHHL ]b

r9 : [ LuxR.OHHL + LuxBox ]b
c9→ [ LuxR.OHHL.LuxBox ]b

r10 : [ LuxR.OHHL.LuxBox ]b
c10→ [ LuxR.OHHL + LuxBox ]b

r11 : [ LuxR.OHHL.LuxBox ]b
c11→ [ LuxR.OHHL.LuxBox + OHHL ]b

r12 : [ LuxR.OHHL.LuxBox ]b
c12→ [ LuxR.OHHL.LuxBox + LuxR ]b

r13 : [ OHHL ]b
c13→ OHHL [ ]b

r14 : [ OHHL ]b
c14→ [ ]b

r15 : [ LuxR ]b
c15→ [ ]b

r16 : [ LuxR.OHHL ]b
c16→ [ ]b
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Modelling Quorum Sensing in Vibrio fischeri (IV)

I Πk = (Σ, L, µ,M1,R), 1 ≤ k ≤ N, where:

• Σ = {OHHL}.
• L = {b}.
• µ = [ ].
• M1 = {LuxBox}.

Stochastic Constants associated with the rules:

c1 = 5, c2 = 8, c3 = 2, c4 = 1, c5 = 2, c6 = 2, c7 = 9, c8 = 1
c9 = 10, c10 = 2, c11 = 250, c12 = 200, c13 = 50, c14 = 30, c15 = 20, c16 = 20,.
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Modelling Quorum Sensing in Vibrio fischeri (V)
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Results and Discussions

I The model has been represented in SBML (Systems Biology Markup
Language).

I The SBML code was generated using CellDesigner.

I The semantics has been captured by the multicompartmental Gillespie
algorithm.

I We have run our simulations using a program written in C with input file
the SBML file specifying our model.

I The emergent behaviour of the system has been studied for three
populations of different size.
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A population of 100 bacteria (I)

Evolution over time of the number of quorated bacteria 1 and the number of
signals (OHHL) in the environment.
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1
A bacterium is quorated if the LuxBox in this bacterium is occupied by the complex LuxR-OHHL.
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A population of 100 bacteria (II)

The behaviour of each individual in the population can be tracked.

I Correlation between the number of signals inside one bacterium (left) and
the occupation of the LuxBox by the complex LuxR-OHHL (right).
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A population of 300 bacteria
We can also study how rules are applied across the evolution of the system.

I Number of applications of the rule representing the basal production
(left) and the rule representing the massive production of the signal.
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r5 : [ LuxBox ]b
c1→ [ LuxBox + OHHL ]b

r11 : [ LuxR.OHHL.LuxBox ]b
c7→ [ LuxR.OHHL.LuxBox + OHHL ]b
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A population of 10 bacteria (I)

Finally, we examine the behaviour of a population of only 10 bacteria.

In this case no recruitment process takes place and the signal does not
accumulate in the environment.
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Quorated bacteria and signals in the environment in a population of 10 bacteria.

BUT ...

one of the bacteria guessed wrong the size of the population and got
upregulated.
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A population of 10 bacteria (II)

But then, after sensing that the signal did not accumulate in the environment,
it switched off its system.

Next figure depicts the behaviour of the bacterium that got quorated.
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A population of 10 bacteria (III)

Finally, we observe that for only 10 bacteria the system remains in an
downregulated state.
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